عملگرهای ترکیبی فشرده بر برخی از فضاهای لیپشیتس توابع تخلیلی بر قرص واحد بسته

پایان نامه
چکیده

در این پایان نامه یک شرط لازم و کافی برای فشردگی ترکیبی بر فضاهای لیپشیتس توابع تخلیلی و فضاهای لیپشیتس توابع متناهی بار مشتق پذیر مطرح می کنیم

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

عملگرهای ترکیبی موزون بین فضاهای باناخ توابع لیپشیتس بردار -مقدار

ض کنیم (d ,x) یک فضای متریک فشرده و ( ? . ? , e ) یک فضای باناخ باشد. در این پایان نامه ابتدا به معرفی فضاهای توابع لیپشیتس بردار - مقدار (e ,(d? ,x))lip برای [1 ,0) ? ? و (e ,(d? ,x))lip برای (1 ,0) ? ? میپردازیم. سپس با تعریف یک نرم مناسب بر این فضاها، نشان میدهیم که این فضاها، فضاهای باناخ هستند. در ادامه شرایط لازم وکافی برای کرانداری و فشردگی عملگرهای ترکیبی موزون بین فضاهای توابع لیپش...

عملگرهای ترکیبی فشرد? فضاهای باناخ توابع اسکالر- مقدار کراندار لیپشیتس بر فضاهای متریک نافشرده

در این پایان نامه با فرض این که ‎(x,d)‎یک فضای متریک نافشرده است، ابتدا به معرفی جبرهای لیپشیتس ‎lip(x,d^{alpha})‎، جبرهای کوچک لیپشیتس ‎lip(x,d^{alpha})‎ و جبرهای برجست? لیپشیتس ‎lip_{0}(x,d^{alpha})‎ برای ‎0<alpha leq 1 می پردازیم و برخی از خواص اساسی آن ها را بیان می کنیم. سپس برخی از قضایای مربوط به فضای متریک r-همبند را بیان می کنیم. در ادامه برخی از ویژگی های فضاهای توابع لیپشیت...

15 صفحه اول

مباحثی از نظریۀ هندسی توابع بر قرص واحد

یکی از مباحث بسیار مهم و جالب در آنالیز مختلط، بررسی ویژگی های هندسی تابع هایی است که بر قرص واحد در صفحۀ مختلط تعریف شده اند. روشن است که نمودار تابع تحلیلی ترسیم پذیر نیست اما برد آن توصیف هندسی دارد. از طرف دیگر، کوشش برای  پاسخ دادن به این سؤال که چه ارتباطی بین ویژگی های هندسی برد این گونه تابعها مانند ستاره وار بودن و محدب بودن با ضرایب بسط تیلور وجود دارد، منجر به پیدایش نظریه ای مهم با ...

متن کامل

الحاقی عملگرهای ترکیبی و ترکیبی وزن دار روی برخی از فضاهای توابع تحلیلی

در این رساله نشان می دهیم که ارتباط عمیقی بین الحاقی رده وسیعی از عملگرها روی فضاهای هاردی وزن دار مختلف وجود دارد. سپس به تعیین الحاقی عملگرهای ترکیبی و ترکیبی وزن دار با نماد کسری روی فضاهای برگمن، دیریکله می پردازیم.‎ در ادامه تعمیمی از عملگرهای ترکیبی و توابع هسته ای بازیافت را روی فضاهای هاردی وزن دار معرفی و برخی خواص آنها را بررسی می کنیم. سپس الحاقی عملگرهای تعمیم یافته با نماد کسری...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023